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ABSTRACT

5-Fluorouracil (5-FU), in combination with other cytotoxic drugs, is commonly used to treat a variety of cancers. 
Dihydropyrimidine dehydrogenase (DPD) catalyzes the first catabolic step of the 5-FU degradation pathway, converting 
80% of 5-FU to its inactive metabolite. Approximately 0.3% of the population demonstrate complete DPD deficiency, 
translating to extreme toxicity of 5-FU. Here we present a case of a patient who had a fatal outcome after treatment 
with 5-FU who was found to have an unknown DPD deficiency discovered at autopsy. 
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CASE REPORT

We present the autopsy findings of a 54-year-old 

male with past  medica l  h is tory  of  smoking, 

hypothyroidism, and newly diagnosed T2N2bM0 

(clinically staged) human papillomavirus positive 

(HPV+) squamous cell carcinoma (SCC) of the left 

base of tongue with metastases to the cervical lymph 

nodes. The patient was enrolled in the OPTIMA 

trial, which entailed dose reduced/deintensified 

chemoradiotherapy for HPV+ oropharyngeal SCC. 

Prior to the hospital admission, the patient had 

received carboplatin/abraxane induction chemotherapy 

(cycle 1) and had good imaging response with complete 

resolution of his primary tongue tumor accompanied by 

a decrease in the size of the cervical lymph nodes, with 

minimal side effects from chemotherapy. The patient 

was then admitted for inpatient chemoradiotherapy 

with 5-FU, paclitaxel, and hydroxyurea (part of cycle 1). 

During the treatment, the patient developed fever in 

the setting of pancytopenia, followed by intractable 

diarrhea and vomiting. His pancytopenia was refractory, 

which, at the time, was attributed to hydroxyurea. 

Therefore, hydroxyurea was initially dose-decreased 

and then held. However, the patient’s clinical course 

continued to worsen. He subsequently developed 

septic shock, progressive desquamative skin lesions, 

acute kidney failure, and sustained pancytopenia. Due 

to persistent hemodynamic instability requiring multiple 

vasopressors and hypoxia, he was transferred to the 

intensive care unit and intubated. Shortly thereafter, 

was transitioned to comfort care and expired 12 days 

after inpatient admission. A complete unrestricted 

autopsy was requested and performed.
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AUTOPSY FINDINGS

Autopsy findings showed skin lesions involving 

head, chest, back, and right arm. Histologic examination 

of these was consistent with toxic epidermal necrolysis 

(Figures 1A and 1B).

Bone marrow examination showed markedly 

hypocellular (<5%) bone marrow with diminished 

trilineage hematopoiesis and virtually no megakaryocytes 

(Figure 2). Kidneys had diffuse acute tubular necrosis. 

The gastrointestinal tract was grossly pale-appearing 

with severely damaged mucosa (Figure 3). Post-mortem 

blood and bilateral lung cultures were positive for 
Stenotrophomonas maltophilia.

Due to the precipitous clinical deterioration and 
autopsy findings, DNA analysis by next generation 
sequencing was performed on formalin-fixed, 
paraffin-embedded liver sample to evaluate for 
pathogenic DPYD variants. Sequencing revealed 
a point mutation one base downstream of exon 
14 (DPYD*2A/c.1905+1G>A) at approximately 100% 
variant allele frequency (Figure 4). Additionally, 
specific copy-number variant analysis was performed 
which revealed no loss of genetic material on 1p21.3, 
confirming homozygosity.

Figure 1. Photomicrograph of the skin with A – toxic epidermal necrolysis (H&E, 4x) and B – toxic epidermal 
necrolysis. Note dyskeratinocytes with arrows. (H&E, 20x).

Figure 2. Photomicrograph of the bone marrow showing 
Markedly hypocellular (<5%) bone marrow with severe 
stromal damage and pigmented histiocytes (H&E, 20x).

Figure 3. Photomicrograph of the rectum showing 
severely damaged mucosa, consistent with 
chemotherapy toxicity (H&E, 4x).
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DISCUSSION

In recent years, the usage of molecular genetics 
has had a profound impact on cancer treatment.1 
The role of molecular genetics has changed from being 
of just a diagnostic and prognostic utility, to providing 
tailored treatment on an individual, patient-by-patient 
basis. Besides allowing patients to be eligible for 
certain therapeutic regimens and clinical trials, cancer 
treatment has become more personalized due to the 
detection of inter-individual differences. Currently, the 
treatment outcomes and drug toxicities due to personal 
variations in pharmacokinetics and pharmacodynamics 
can be foreseen in some cases.2 These differences in 
pharmacokinetics and pharmacodynamics may result 
from drug–drug interactions, ethnicity, age, renal 
and liver function, comorbidities, nutritional status, 
smoking, and alcohol consumption. More importantly, 
genetic factors that have a high impact on the drug 
efficacy and toxicity are being discovered, emphasizing 
the increasing need to utilize pharmacogenetics testing 
in cancer treatment.2

Drug metabol ism is  t radit ional ly  d iv ided 
i n t o  m o d i f i c a t i o n  ( p h a s e  I ) ,  c o n j u g a t i o n 
(phase II), and elimination (via urine or bile).2 
Cytochrome P450 (CYP) family of enzymes are 
responsible for the phase I modifications (oxidation, 
reduction, and hydrolysis) of the drugs.3 The phase 

II conjugation reactions, which lead to activation or 
inactivation of the drugs, are performed by enzymes 
such as glutathione S-transferases (GSTs) and uridine 
diphosphate glucuronosyltransferases (UGTs).4 
The enzymes responsible for the purine and pyrimidine 
analog metabolism, thiopurine S-methyltransferase 
(TPMT) and dihydropyrimidine dehydrogenase (DPD) 
respectively, have various known polymorphisms in 
their encoding genes, which ultimately affect their 
enzymatic activity.2

5-FU and its oral prodrug capecitabine, are one 
of the most frequently prescribed chemotherapeutic 
drugs for the treatment of patients with cancers of the 
gastrointestinal tract, breast, and head and neck.5,6 
5-FU undergoes enzymatic activation to a cytotoxic 
fluoropyrimidine nucleotide for its therapeutic effect, 
in which it is incorporated into both nuclear and 
cytoplasmic RNA species affecting the synthesis, 
stability, processing, and methylation of RNA.7 
Similarly, another is the degradation of 5-FU is an 
important consideration. A majority (80%) of 5-FU is 
catabolized in the liver by DPD enzyme, which encoded 
by the DPYD gene; the deficiency of DPD can lead 
to toxic levels of unmetabolized 5-FU.8 5-FU toxicity 
was first reported in 1985 in a patient with familial 
pyrimidinemia who had experienced severe, almost 
lethal, toxicity upon treatment with 5-FU, providing 
evidence that a genetic defect in pyrimidine catabolism 

Figure 4. Next Generation Sequencing reads show point mutation one base downstream of exon 14, approximately 
100% variant allele frequency, read depth 700, as seen in Integrative Genomics Viewer (IGV).
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could be associated with fluoropyrimidine-associated 
toxicity.9 Although considered a safe treatment in a 
majority of the patients, up to 30% of patients can 
experience severe treatment-related toxicity which can 
be fatal in up to 1% of cases.7,9

The extent of toxicity is determined by the 
individuals’ functionality of the DPYD polymorphism. 
There are currently three clinically recognized common 
non-functional DPYD variants: DPYD*2A/c.1905+1G>A 
(as  seen in  th i s  case ) ,  *13/c .1679T>G, and 
rs67376798/c.2846A>T.8 Homozygous or compound 
heterozygous nonfunctional alleles can cause severe 
or even fatal toxicity. Homozygotes for nonfunctional 
variants may have either very low enzymatic activity 
or be completely DPD deficient,10 and might therefore 
require selection of an alternative drug.8 The DPYD 
(NM_000110.3): c.1905+1G>A variant (as seen in 
this case), also known as rs3918290 (dbSNP) and 
DPYD*2A (ClinVar Database Allele ID: 15471) with an 
alternative nomenclature of IVS14+1G>A, results in a 
pathogenic alteration of the donor site at the splice 
site of intron 14.11 Recently, two additional DPYD 
variants, c.1679T>G and c.1236G>A/HapB3 have 
also been systematically evaluated for their clinical 
impact on 5-FU metabolism and might require dose 
adjustment to prevent toxicity.12 Lastly, the absence 
of these polymorphisms does not equate to absent 
risk of toxicity, since DPYD is highly polymorphic and 
additional uncommon variants may result in toxicity.8

In a recent series of 243 patients (88.5% of 
which were on monotherapy) studied for toxicity 
from capecitabine (the oral prodrug of 5-FU), a wide 
range of toxic effects were seen. These included 
gastrointestinal, hematologic, and neurologic toxicities 
with moderate-to-severe toxicities in 12.4% patients 
and severe toxicities in 2.1% of patients. There was only 
one case with drug-related fatal outcome characterized 
by thrombocytopenia, diarrhea, renal failure, dyspnea 
and hypovolemic shock,11 similar to our patient. Other 
toxic effects included hand-foot syndrome. These 
toxic effects occurred irrespective of the patient’s 
performance status, age, renal function, and the line of 
capecitabine treatment. In this study, a total of 65 DPYD 
variants were identified, of which, variants D949V and 
DPYD*2A/c.1905+1G>A were significantly associated 
with an increased risk of toxicity.11

Along with patient safety, the effectiveness 
and cost-saving benefits of upfront screening for 

clinically relevant non-functional variants must also be 
considered. In a study of 2,038 patients intended to 
be treated with fluoropyrimidine based therapy, the 
patients were prospectively screened for DPYD*2A. 
If they were found to have heterozygous polymorphism, 
they were given a reduced median dose-intensity of 
50%, followed by titration based on tolerance. These 
patients were found to have their risk of toxicity 
significantly reduced from 73% (historical controls) 
to 28% by genotype-guided dosing. Additionally, the 
average total treatment cost per patient was lower for 
screening than for non-screening, outweighing the 
screening costs.13

CONCLUSION

DPD-deficiency is known to be a leading cause 
of severe fluoropyrimidine toxicity,7,9 culminating in 
fatality,11 as was observed in our case. In patients 
who are expected to make a full recovery and are 
expected to have a good prognosis after their cancer 
treatment, this is a very unfortunate yet possibly 
preventable outcome. Although not part of the routine 
clinical practice, prospective screening for DPYD*2A 
polymorphism leading to genotype-guided dosing has 
been successful at significantly reducing toxicity, while 
at the same time being cost-efficient,13 posing a valid 
argument of upfront screening which would positively 
impact both patient safety and treatment efficacy.

Consent was granted for a complete unrestricted 
autopsy by the corresponding family member.
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